Tunable Quantitative Assays

Invention Summary:

Scientists at Rutgers have designed a way to simultaneously quantitate target biomarkers and discriminate these biomarkers from closely related molecular entities.  By making use of the thermodynamics of competitive differential hybridization, Tunable Quantitation Assays (TQAs) quantify target concentrations and substantially reduce the occurrence of false positives. This technology allows the target binding affinity to be rationally modulated to create useful signal ranges optimized for a given diagnostic platform. TQA technology is applicable to a wide variety of previously developed biosensor and diagnostic platforms.

Market Application:

  • Diagnostics
  • Bioinformatics
  • Microfluidics
  • RT-PCR
  • Biosensors


  • Reduces false positives in existing technologies
  • Works for both DNA-meter and Apta-meter (protein, small molecules, etc.) diagnostics
  • Complementary to fluorescence technologies

Intellectual Property & Development Status:

Patent pending. Available for licensing and/or research collaboration.

Select Publications:

  • Braunlin, WH et al. 2013. DNA Meter: Energy Tunable Quantitative Hybridization Assay. Biopolymers, 99:408-417.
  • Völker J, et al. 2010. Energy crosstalk between DNA lesions: implications for allosteric coupling of DNA repair and triplet repeat expansion pathways. J Am Chem Soc. 132(12):4095-7.
  • Völker  J, et al. 2010. Energetic coupling between clustered lesions modulated by intervening triplet repeat bulge loops: Allosteric implications for DNA repair and triplet repeat expansion. Biopolymers.  93(4):355-69.
Patent Information:
ID: 2011-022

Kathryn Uhrich
For Information, Contact:
Fred Banti
Associate Director, Life Sciences
Rutgers University
Drug Delivery
Neurological disorder & neuropathic pain